On Fourier Stieltjes Transforms of Discrete measures.
نویسندگان
چکیده
منابع مشابه
Discrete–time Fourier Series and Fourier Transforms
We now start considering discrete–time signals. A discrete–time signal is a function (real or complex valued) whose argument runs over the integers, rather than over the real line. We shall use square brackets, as in x[n], for discrete–time signals and round parentheses, as in x(t), for continuous–time signals. This is the notation used in EECE 359 and EECE 369. Discrete–time signals arise in t...
متن کاملDiscrete–time Fourier Series and Fourier Transforms
We now start considering discrete–time signals. A discrete–time signal is a function (real or complex valued) whose argument runs over the integers, rather than over the real line. We shall use square brackets, as in x[n], for discrete–time signals and round parentheses, as in x(t), for continuous–time signals. This is the notation used in EECE 359 and EECE 369. Discrete–time signals arise in t...
متن کاملRepresentation of Functions as Absolutely Convergent Fourier-stieltjes Transforms
0. Introduction. Let G be a locally compact Abelian group, and G* its group of (continuous) characters. We write (y, x) to indicate the function on G*XG which is the value of the character y EG* at the point *6G, or, dually, the value of the character xEG at the point y EG*. Borel sets in G are taken to be the smallest cr-algebra of sets containing all closed sets. We consider the set of all re...
متن کاملComputation of Convolutions and Discrete Fourier Transforms by Polynomial Transforms
Discrete transforms are introduced and are defined in a ring of polynomials. These polynomial transforms are shown to have the convolution property and can be computed in ordinary arithmetic, without multiplications. Polynomial transforms are particularly well suited for computing discrete two-dimensional convolutions with a minimum number of operations. Efficient algorithms for computing one-d...
متن کاملFaster Homomorphic Evaluation of Discrete Fourier Transforms
We present a methodology to achieve low latency homomorphic operations on approximations to complex numbers, by encoding a complex number as an evaluation of a polynomial at a root of unity. We then use this encoding to evaluate a Discrete Fourier Transform (DFT) on data which has been encrypted using a Somewhat Homomorphic Encryption (SHE) scheme, with up to three orders of magnitude improveme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1974
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-11547